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Abstract
The first thorough symmetry analysis of the p–d hybridization and p–p hopping
is performed for yttrium–iron garnets. Group-theoretical calculations of spin-
independent p–d hybridization and p–p transfer-matrix elements allow us to
determine symmetry-adapted ‘channels’ in the crystal unit cell. The results
clearly indicate what role is played by each of the interactions in a possible
charge transportation. The p–d hybridization turns out to be restricted to
the small-sized octahedral and tetrahedral clusters of iron–oxygen neighbours;
which results from the specific complex geometry of garnets. A propagation
between the hybridizing clusters of the same type is realized by the p–p hopping
to the second neighbours. The p–p hopping itself is shown to be restricted to
small-sized oxygen clusters. Moreover, the second-neighbour p–p hopping
between octahedral hybridizing clusters shows a strong anisotropy along the
〈111〉 axis. The p–p hopping between the nearest neighbours appears less
important. An inter-sublattice charge motion may be mediated solely by the p–d
hybridization since the nearest-neighbour hybridizing clusters share a common
oxygen.

1. Introduction

Iron garnets and, in particular, the prototypical yttrium–iron garnet, Y3Fe5O12 (YIG), have
attracted much academic and also technological interest [1–4]. They have turned out to
be extremely useful in applications in microwave, magnetic, optical and magneto-optical
devices. The magnetic properties of magnetic garnets doped with rare-earth ions or charge-
compensating diamagnetic ions have been intensively studied for quite a long time. Pure
YIG is an insulating ferrimagnet. However, when the substituting ions have valency other
than 3+, uncompensated garnets having semiconductor properties are produced, which form
new materials with potential applications thanks to their unique electrical and magneto-optical
properties. The Ca2+-substituted yttrium–iron garnet (Ca2+:YIG) is a good example showing
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charge-uncompensated doping. The mechanism of the electrical conduction process in the
doped material has not yet found a truly satisfactory explanation [3, 4].

In this paper we present realistic symmetry calculations which, in our opinion, are
necessary as a first step towards understanding the development of charge conductivity in
both pure and doped iron garnets. It is well established that the electronic structure of
yttrium–iron garnets has not been calculated with any standard band-structure theory. For
a deeper interpretation of many fascinating properties of these materials, it seems, therefore,
indispensable to clarify the microscopic role of the hybridization between the 3d states of iron
and 2p states of oxygen, and also that of the direct inter-ion p–p hopping [5–7].

As is well known, the geometry of garnets is very complex (see, for example, [8]). The
iron ions occupy 40 inequivalent crystal sublattices: 16 octahedral (a) and 24 tetrahedral (d).
Its 24 dodecahedral sublattices (c) are occupied by trivalent yttrium ions with all their shells
closed up. Each a-sublattice site is surrounded by six oxygen nearest neighbours, whereas
each d site has four oxygens around it. The overall symmetry of the system is cubic. Two
systems of electrons must be considered: 3d electrons on the iron ions which are treated in
the strictly localized (atomic) limit, and the 2p electrons which are allowed to hop between
different oxygen sites. In our approach, in order to maintain a coupling between the two
subsystems we allow also inter-subsystem 3d–2p hopping which is called p–d hybridization,
to distinguish it from the intra-subsystem oxygen–oxygen hopping.

The largest (cubic) contribution to the crystal field acting on each 3d electron, in the strong-
field approximation, gives rise to a splitting of five 3d orbital states into the t2g triplet and eg

doublet. For a 3d compensating hole, localized at an octahedral site, the ground state is the eg

doublet and at the tetrahedral site it is the t2g triplet [9]. The energy difference between the
excited and ground crystal-field energy levels is also different for the octahedral and tetrahedral
sublattices [4]. The cubic crystal field does not split the t1u triplet of the 2p orbital states [9].

It is obvious that the p–d hybridization and the p–p hopping play a crucial role in a
determination of the electronic structure of the system (see, for example, [10, 15]). In the first-
quantization representation, the two mechanisms can be expressed by the same well-known
standard Hamiltonian:

Ĥ =
∑(

p2
i

2m
+ V (ri)

)
(1)

where the summation is over all the electrons involved (i). The Hamiltonian consists of the
kinetic and potential terms. The latter, apart from a single-site contribution, can comprise the
electron correlations in the Hartree–Fock approximation.

It is then very important to choose states of proper symmetry for the perturbation calculus.
In the first part of the paper, our attention is focused on the p–d hybridization. Even
when considered in a single-particle approach, the p–d hybridization remains a global effect,
i.e. affecting the whole system, so it seems natural to study the problem by means of space-group
theory. In group-theoretical terms, the problem consists in a determination of the selection
rules that govern whether the process is allowed or not. The wave function of the crystal unit
cell can be approximated as a linear combination of all possible single-particle orbital and
spin states, attached to each site of the cell [10]. In this LCAO (linear combination of atomic
orbitals) approach, the following two contributions can be distinguished: one running through
all of the iron sites (
Fe), and the other through all 96 oxygen sites (
O). The hybridization
process is then governed by the value of the matrix element: 〈
FeĤp−d
O〉. In determining
this selection rule the essential problem is that of establishing whether it is possible to show
group theoretically when the matrix element must vanish. The orbital states can be assigned
to the representations of the crystal-field point symmetry group, whereas the positions of the
ions and the Hamiltonian are assigned to the various representations of the space symmetry
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group (see, for instance, [10, 11]). Thus, in principle, the determination of this selection rule
involves a Kronecker product of five representations of two different groups. The problem can
be simplified, however, if one realizes that the hybridization Hamiltonian must be invariant with
respect to all of the operators of the space group which means that it corresponds to the identity
representation of the group. Moreover, since it is quite realistic to limit the p–d hybridization to
iron–oxygen pairs of the nearest neighbours, we can define just two transitive representations
of the space group, one which distributes the octahedral iron–oxygen pairs, and another which
distributes the pairs consisting of tetrahedral iron and oxygen. Thus, finally it turns out that
one has to consider only a double Kronecker product of two irreducible representations of a
mutual subgroup of only two symmetry groups. Let us specify also exactly what we mean by
a ‘hybridization channel’. It is a set of nearest-neighbour iron–oxygen pairs in the crystal unit
cell which forms a basis of any irreducible representation of the space group. The appropriate
orbital states are attached to each pair.

Since the p–d hybridization involves no coupling between the orbital and spin degrees of
freedom, the hybridizing states correspond to the same spin, which forms a first step towards
actual factorization of the hybridization matrix. The latter splits into two identical submatrices
with the spin up and spin down. The same is also true of the direct p–p hopping.

It is generally agreed that in many transition metal oxides, the electric charge transfer is
mediated by the p–d hybridization (see [10] and references therein). As far as yttrium–iron
garnets are concerned, we believe that the microscopic mechanism of the electric conduction
is more complicated, involving not only p–d hybridization, but also direct p–p hopping.
Therefore, we find it both important and instructive to perform a thorough symmetry analysis
of these problems, with the use of advanced group-theoretical methods.

The organization of the paper is as follows. In the first section, the application of the space-
group theory to the p–d hybridization is outlined. Also, the results of the actual calculations
are gathered and thoroughly analysed, and conclusions are proposed. In the second section,
we deal with the direct p–p hopping and, in particular, we present very interesting aspects of
the effect resulting from the complex geometry of the system. Finally, in the last section, the
general conclusions are proposed.

2. The space-group theory approach to the problem of the p–d hybridization in YIG

As mentioned before, the overall symmetry of garnets is cubic, with the space group O10
h

belonging to the bcc Bravais class.
Let us define the quotient group G:

G = O10
h /T (ai) (2)

whereT (ai) is the translational group generated by the minimum lattice vectors �ai (i = 1, 2, 3),
along the fourfold axes of the crystal, and the order ofG is 96. G distributes all 64 cations and
all 96 oxygen ions over the elementary cube which is the fourfold extended Bravais cell. Thus,
hereafter, the group G will be referred to as a distributing group. The generating operators
of group G are given in table 1, together with the information on their action on the vector
(x, y, z) modulo T (ai) [11].

The origin of the Cartesian coordinate system is located at the site 1a. The fourfold axes are
along �i, �j, �k which are parallel to the crystal axes. In the second column there are the symbols
for the generating operators in the 96-element quotient group, after Bradley and Cracknell [11].

Let �Fe be a set of all 40 iron ions of the elementary cube, and P Fe: G ⊗ �Fe → �Fe

be the action realizing this distribution. Clearly, the action P Fe, considered as a permutation
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Table 1. The generating operators of the group G.

{C+
31|000} g5 z, x, y

{C2a|− 1
4

1
4

1
4 } g19 y − 1

4 , x + 1
4 , z̄ + 1

4

{I|000} g25 x̄, ȳ, z̄

{C2x | 1
2

1
2 0} g50 x + 1

2 , ȳ + 1
2 , z̄

{C2z| 1
2 0 1

2 } g52 x̄ + 1
2 , ȳ, z + 1

2

representation, decomposes into transitive representations:

P Fe =
∑
β∈I

RG:Gβ

(3)

and correspondingly the set �Fe decomposes into orbits:

�Fe =
⋃
β∈I

�
β

Fe (4)

with I = {a, d} being the set of the iron sublattices; the symbol Gβ in the following equation
denotes the stabilizer of the representation site rβ1 ∈ �

β

Fe, i.e.

Gβ = {g ∈ G|P Fe(g, �rβ1 ) = �rβ1 } ⊂ G. (5)

The stabilizers of the two iron sites (a, d) are isomorphic with S6(G
1
6) and S4(G

1
4), respectively.

The notation in parentheses is after Bradley and Cracknell [11].
Analogously, let �O be the set of all 96 oxygen sites of the elementary cube, and

PO: G ⊗ �O → �O be the action realizing their distribution. In the case of the oxygen
set, the action PO, considered as a permutation representation, turns out to be the regular
representation of the quotient group, i.e.

PO = RG:{E}. (6)

with {E} denoting the trivial subgroup of G. Each set of all possible iron–oxygen pairs
(iβ, f ), where: β = a, d; ia = 1, . . . , 16; id = 1, . . . , 24; and f = 1, . . . , 96, decomposes
naturally into orbits of equidistant pairs. From the physical point of view, it seems to be
sensible and justifiable to consider only the orbits of nearest neighbours: one consisting of
the pairs with iron of the cubic sublattice, i.e. �a, and the other of those with iron of the
tetrahedral sublattice, i.e. �d. The numbers of pairs in the two are the same and equal to the
number of the oxygen sites in the elementary unit cell. As already mentioned, the positions of
oxygens are specified by successive appropriate elements of groupG (cf. table 1) [8, 12]. The
distribution of the pairs over the elementary unit cell is then realized by the following action:
G ⊗ �β → �β (β = d, a). The action defines two permutation representations which are
identical to the transitive representations of G, Tβ (β = d, a). Both Td and Ta turn out to be
the regular representations of the distributing group, G.

In order to determine the selection rules for the p–d hybridization, we now have to include
orbital states of the electrons involved. To each site of the iron sublattices there is attached a
fibre, isomorphic with the unitary linear space of eg doublet and t2g triplet 3d states [9, 14]. In
the same way, a fibre isomorphic with the unitary linear space of the orbital 2p states of the
cubic t1u triplet is associated with each oxygen site [9, 14].

The matrix elements of the p–d hybridization term are defined connecting the 3d and
2p orbital states, localized at the neighbouring ions. As stated before, a possible occurrence
of non-zero matrix elements of Ĥp−d requires second-order invariants to appear in a tensorial
product of the two irreducible representations: one defined in the fibre space and the other in the
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positional space. Let us discuss the problem separately for each of the two nearest-neighbour
iron–oxygen orbits, �β .

However, before we do that we have to overcome the difficulty of the formalism, which
obviously arises at this point. It is connected with the point group Oh being only an isogonal
subgroup of the quotient groupG [13]. The largest point subgroup ofG is S6, i.e. the stabilizer
of any octahedral site a. The point group S6 seems to be a natural choice for the orbit �a with
the origin of the coordinate system localized at the site 1a. However, it is not the best choice
for the other iron sublattice. So let us first discuss the problem for the octahedral orbit �a.

Both groups considered so far must then be reduced to their mutual subgroup S6, and
consequently the irreducible representations (irreps) of the distributing group G as well as
those of the point group Oh become reducible. And, as such, they can all be decomposed into
direct sums of the irreps of group S6. There are just six of them, all one-dimensional (see, for
instance, [14]). The decomposition of each irrep of the point group Oh, after the restriction to
the point group S6, can be expressed by the following formula:

�Oh
µ ↓ S6 =

∑
m(�Oh

µ ↓ S6, θ)θ. (7)

The summation in the formula is over the set of all six irreps θ of the point group S6.
The results of this procedure for the point group Oh are given below explicitly by the

following formulae:

aOh
1g ↓ S6 = aOh

2g ↓ S6 = aS6
g (8)

eOh
g ↓ S6 = eS6

g ⊕ (eS6
g )

∗ (9)

tOh
1g ↓ S6 = tOh

2g ↓ S6 = aS6
g ⊕ eS6

g ⊕ (eS6
g )

∗ (10)

together with the corresponding formulae resulting from the replacement g −→ u.
The character tables of the irreps of both subgroups, i.e. Oh and S6, can be found, for

instance, in [14].
For the distributing group G, the analogous subduction equation takes the form

RG
γ ↓ S6 =

∑
m(RG

γ ↓ S6, θ)θ (11)

where again the summation is over all six irreps of the group S6. The results can be specified
as follows:

R1 ↓ S6 = R3 ↓ S6 = aS6
g R2 ↓ S6 = R4 ↓ S6 = aS6

u (12)

R5 ↓ S6 = eS6
g ⊕ (eS6

g )
∗ R6 ↓ S6 = eS6

u ⊕ (eS6
u )

∗ R7 ↓ S6 = aS6
g ⊕ aS6

u (13)

R8 ↓ S6 = (eS6
g )

∗ ⊕ eS6
u R9 ↓ S6 = eS6

g ⊕ (eS6
u )

∗ (14)

R10 ↓ S6 = R12 ↓ S6 = aS6
g ⊕ eS6

g ⊕ (eS6
g )

∗ (15)

R11 ↓ S6 = R13 ↓ S6 = aS6
u ⊕ eS6

u ⊕ (eS6
u )

∗ (16)

R14 ↓ S6 = aS6
g ⊕ eS6

g ⊕ (eS6
g )

∗ ⊕ aS6
u ⊕ eS6

u ⊕ (eS6
u )

∗. (17)

The character table of the irreps of the distributing groupG can be found in [11], on p 269.
As already stated, the fibre space of any iron–oxygen pair is a tensorial product of the 3d

and 2p states. From equations (8)–(10), the tensorial products can be given in the form

(tOh
2g ⊗ tOh

1u ) ↓ S6 = (aS6
g ⊕ eS6

g ⊕ (eS6
g )

∗)⊗ (aS6
u ⊕ eS6

u ⊕ (eS6
u )

∗) (18)

and analogously

(eOh
g ⊗ tOh

1u ) ↓ S6 = (eS6
g ⊕ (eS6

g )
∗)⊗ (aS6

u ⊕ eS6
u ⊕ (eS6

u )
∗). (19)
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Moreover, the following relations are useful in further consideration:

aS6
g ⊗ aS6

u = eS6
g ⊗ (eS6

u )
∗ = (eS6

g )
∗ ⊗ eS6

u = aS6
u (20)

aS6
g ⊗ eS6

u = eS6
g ⊗ aS6

u = (eS6
g )

∗ ⊗ (eS6
u )

∗ = eS6
u . (21)

In the positional space of the nearest-neighbour hybridizing pairs �a, the regular
representation RG decomposes into a direct sum of all the irreps ofGwith each irrep appearing
in the sum as many times as its dimension. In order to investigate all of the quadratic products of
the positional and fibre representations, we only need to take into consideration these positional
irreps ofGwhich, after the restriction ofG to S6, decouple into sums containing aS6

u , eS6
u and/or

(eS6
u )

∗ (see equations (12)–(17)).
By resorting to the well-known projection procedure, one can determine all the bases of

the relevant irreps of the point group S6 in the standard fibre space of a hybridizing pair. For
the irrep aS6

u the results are displayed in table 2.

Table 2. Bases of the irrep aS6
u for a standard fibre of any iron–oxygen (ia–f ) pair of nearest

neighbours.

aS6
u

eOh
g (ia)⊗ tOh

1u (f )
1√
6
(θ(ia) + iε(ia))(z(f ) + ω∗x(f ) + ωy(f ))

√
6

2 Va

1√
6
(θ(ia)− iε(ia))(z(f ) + ωx(f ) + ω∗y(f ))

√
6

2 Va

1
3 (ξ(ia) + η(ia) + ζ(ia))(x(f ) + y(f ) + z(f )) 2

√
3Vd

tOh
2g (ia)⊗ tOh

1u (f )
1
3 (ζ(ia) + ω∗η(ia) + ωξ(ia))(z(f ) + ω∗x(f ) + ωy(f )) −√

3Vd

1
3 (ζ(ia) + ωη(ia) + ω∗ξ(ia))(z(f ) + ωx(f ) + ω∗y(f )) −√

3Vd

In the first column, the original Cartesian products of the irreps of Oh are given. In the
second column, all possible bases of aS6

u are gathered, according to the successive products in
equation (20). The values of the matrix elements of Ĥp−d are presented in the third column.

As seen from the table, all five aS6
u singlets turn out to be bonding. The values of the matrix

elements of Ĥp−d are not equal to one another as might easily have been expected. Also, two
different hybridization parameters (Va and Vd) have been introduced to express the difference
in hybridization between the original 2p states and those of 3d belonging to eg or t2g, which is
dependent on the wave functions involved.

Analogously we can find all the bases for the irreps eS6
u and (eS6

u )
∗. The result turns out,

however, to be less promising, since all of the matrix elements of the hybridization Hamiltonian
are equal to zero, which means that all the eS6

u singlets are non-bonding. The result for the
complex-conjugate irrep (eS6

u )
∗ is the same.

Let us now repeat the procedure presented for a hybridizing pair of the orbit �d. In this
case, a natural point group is the stabilizer of each tetrahedral iron site, i.e. the group S4.
Let us consider specifically the tetrahedral site 9d since it is one of the six tetrahedral nearest
neighbours of the octahedral site 1a. All necessary information on the stabilizer of the site 9d

is gathered below in table 3.
The second column of the table presents symbols for the operators in the distributing group

G with the origin of the Cartesian coordinate system at the iron site 9d which means that

x ′ = x − 1

4
y ′ = y +

1

8
z′ = z. (22)

With the origin of the coordinate system localized at the octahedral site 1a, the stabilizer of
any tetrahedral site cannot be a point subgroup of groupG since its operators contain fractional
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Table 3. The stabilizer S4(G
1
4) of the site 9d and its action on the vector (x′, y′, z′).

{E|000} g′
1 x′, y′, z′

{C2y |000} g′
3 x̄′, y′, z̄′

{S−
4y |000} g′

86 z̄′, ȳ′, x′

{S−
4y |000} g′

89 z′, ȳ′, x̄′

translations. This is the case for any unsymmorphic space group, and after a transformation of
the coordinate system, the tetrahedral stabilizer can become a point subgroup of the distributing
group O10

h /T (ai).
The scheme presented in detail for the former case is followed. The decomposition of the

irreps of the group Oh after its restriction to the group S4 can be expressed by the formulae

aOh
1g ↓ S4 = aOh

2u ↓ S4 = aS4 aOh
2g ↓ S4 = aOh

1u ↓ S4 = bS4 (23)

eOh
g ↓ S4 = eOh

u ↓ S4 = aS4 ⊕ bS4 (24)

tOh
1g ↓ S4 = tOh

2u ↓ S4 = aS4 ⊕ eS4 ⊕ (eS4)∗ (25)

tOh
2g ↓ S4 = tOh

1u ↓ S4 = bS4 ⊕ eS4 ⊕ (eS4)∗. (26)

The character tables of both point groups can be found, for instance, in [14].
For the distributing group G, the decomposition can be expressed as follows:

R1 ↓ S4 = R4 ↓ S4 = aS4 R2 ↓ S4 = bS4 (27)

R5 ↓ S4 = R6 ↓ S4 = aS4 ⊕ bS4 (28)

R7 ↓ S4 = R8 ↓ S4 = R9 ↓ S4 = eS4 ⊕ (eS4)∗ (29)

R10 ↓ S4 = R13 ↓ S4 = aS4 ⊕ eS4 ⊕ (eS4)∗ (30)

R11 ↓ S4 = R12 ↓ S4 = bS4 ⊕ eS4 ⊕ (eS4)∗ (31)

R14 ↓ S4 = 2aS4 ⊕ 2bS4 ⊕ eS4 ⊕ (eS4)∗. (32)

We can now alternate appropriately the formulae for the tensorial products of the 3d and
2p cubic crystal-field states.

In the case of the orbit �d, the following results are obtained:

(tOh
2g ⊗ tOh

1u ) ↓ S4 = (bS4 ⊕ eS4 ⊕ (eS4)∗)⊗ (bS4 ⊕ eS4 ⊕ (eS4)∗) (33)

and

(eOh
g ⊗ tOh

1u ) ↓ S4 = (aS4 ⊕ bS4)⊗ (bS4 ⊕ eS4 ⊕ (eS4)∗). (34)

As before, in the case of the orbit �a, in our further discussion we will make use of the
following relations:

bS4 ⊗ bS4 = eS4 ⊗ (eS4)∗ = aS4 (35)

aS4 ⊗ bS4 = eS4 ⊗ eS4 = bS4 (36)

aS4 ⊗ eS4 = bS4 ⊗ (eS4)∗ = eS4 . (37)

For the irrep (eS4)∗, a relation analogous to that for eS4 can be found.
Again, the standard projection procedure provides all the bases of the four irreps of the

point group S4, in the fibre space of the tetrahedral iron–oxygen hybridizing pair. Knowing



3614 A Lehmann-Szweykowska et al

the bases, we can easily determine the matrix elements of the Hamiltonian Ĥp−d. The irrep
aS4 turns out to be non-bonding; i.e., all the matrix elements are equal to zero.

The irreps bS4 and eS4 are bonding and the information on them is provided in tables 4 and
5, respectively.

In table 4, in the first column, the original Cartesian products of the irreps of Oh are given.
All of the possible bases of the irrep bS4 are presented in the second column, whereas values
of the matrix elements of Ĥp−d are gathered in the last column. As can be seen, the choice of
the bases determined by bS4 makes the hybridization possible.

Table 4. Bases of the irrep bS4 for a standard fibre of any tetrahedral iron–oxygen (id–f ) pair of
nearest neighbours.

bS4 Matrix elements of Ĥp−d

eOh
g (id)⊗ tOh

1u (f )
1√
2
(θ(id) +

√
3ε(id))y(f ) −Va

tOh
2g (id)⊗ tOh

1u (f )
1
2 (ξ(id) + iζ(id))(x(f ) + iz(f )) i

√
3Vd

1
2 (ξ(id)− iζ(id))(x(f )− iz(f )) −i

√
3Vd

In table 5, the first column gives the two possible Cartesian products of the appropriate
irreps of Oh. The bases of eS4 are in the second column, and the hybridization matrix elements
in the third one.

Table 5. Bases of the irrep eS4 for a fibre of the tetrahedral iron–oxygen (id–f ) pair.

eS4 Matrix elements of Ĥp−d

eOh
g (id)⊗ tOh

1u (f )
1

2
√

2
(θ(id) + iε(id))(x(f ) + iz(f )) 1

2
√

2
Va(1 + i)

1
2
√

2
(
√

3θ(id)− ε(id))(x(f )− iz(f )) − 1
2

√
3
2Va(1 + i)

tOh
2g (id)⊗ tOh

1u (f )
1√
2
η(id)(x(f )− iz(f ))

√
3
2Vd(1 − i)

1√
2
(ξ(id)− iζ(id))y(f )

√
3
2Vd(1 − i)

From the physical point of view, the question of the irreps of S4 and S6 seems to be
particularly important; after the extension of these point groups into the distributing group
O10

h /T (ai), they induce the same irrep of the distributing group. We are going to return to this
problem in our further discussion.

In either orbit of the nearest-neighbour iron–oxygen pairs, bases of all relevant irreps of
the distributing group G can be found by the standard projection method. Some general
conclusions can be drawn immediately. Firstly, the two orbits spontaneously split into
hybridizing clusters each consisting of the iron site surrounded by its six (the octahedral
sublattice) or four (the tetrahedral sublattice) oxygens. No oxygen sites are shared by
hybridizing clusters of the same type. However, there are common oxygen sites for the nearest
a-sublattice and d-sublattice clusters. It seems natural then for the hybridizing clusters of either
type to be labelled according to their central iron ions.

The final result can be described by the following formula:

|Rγ , µγ , ν〉 = N−1
γ

∑
iβ

Č(Rγ , µγ , ν; iβ)
∑
f

C(Rγ , µγ , ν; f )(iβ, f ). (38)

The summation over pairs (iβ, f ) of each orbit �β (β = a, d) is performed in two steps. The
first summation runs over all 16 hybridizing clusters of the type a or 24 clusters of the type d.
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In the second step, the summation is performed inside each cluster running through either
all six oxygens which are the nearest neighbours of the central octahedral iron or the four
oxygen neighbours of the tetrahedral site. The inter-cluster relations are expressed in terms of
the coefficients Č(Rγ , µγ , ν; iβ) . The intra-cluster situation is described by the coefficients
C(Rγ , µγ , ν; f ) where in this case f labels oxygen sites of the cluster. As an example, we
present below (in tables 6–9) the results of the projection procedure for the first vector of each
space belonging to the successive relevant irreps of the transitive group G.

In the first of the tables (table 6), one standard cluster of the type a (1a) is subjected to
all operators of all of the relevant irreps of the group G. In table 7, the same is done with the

Table 6. Non-zero coefficients C(Rγ , µγ , ν; f ) for the first vectors (ν = 1) of all the relevant
irreps (Rγ ) of the quotient group, G, projected onto a standard cluster (e.g. iβ = 1a) of the iron–
oxygen nearest-neighbour orbit (�a). Moreover, µγ labels subspaces of�a belonging to the same
irrep Rγ .

f ∈ 1a

Rγ µγ 1 5 9 25 29 33

R2 1 1 1 1̄ 1̄ 1̄

R7 1 1 1 1 1 1 1
2 0 0 0 0 0 0

R11 1 1 0 0 1̄ 0 0
2 0 1 0 0 1̄ 0
3 0 0 1 0 0 1̄

R14 1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

Table 7. Non-zero coefficients C(Rγ , µγ , ν; f ) for the first vectors (ν = 1) of irreps R2 of the
quotient group, G, projected onto a standard cluster (e.g. iβ = 9d) of the iron–oxygen nearest-
neighbour orbit (�d).

f ∈ 9d

Rγ µγ 1 3 86 89

R2 1 1 1̄ 1̄

R7 1 1 1̄ 0 0
2 0 0 1 1̄

R11 1 1 1̄ 0 0
2 0 0 0 0
3 0 0 1 1̄

R14 1 1 1̄ 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 1 1̄
5 0 0 0 0
6 0 0 0 0
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Table 8. Non-zero coefficients Č(Rγ , µγ , ν; ia) for the first vectors (ν = 1) of all the relevant
irreps (Rγ ) of the quotient group, G, for all the iron–oxygen clusters (ia) of the orbit �a where µγ
labels subspaces of �a, belonging to the same irrep Rγ .

ia ∈ �a

Rγ µγ
1a

9a

2a

10a

3a

11a

4a

12a

5a

13a

6a

14a

7a

15a

8a

16a

R2 1 1 1 1 1 1 1 1

R7 1 1 1 1 1

2 1 1 1 1

R11 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1

R14 1 1 1̄ 1 1̄ 1 1̄ 1 1̄

2 1 1̄ 1̄ 1 1 1̄ 1̄ 1

3 1 1 1̄ 1̄ 1 1 1̄ 1̄

4 1 1̄ 1 1̄ 1̄ 1 1̄ 1

5 1 1̄ 1̄ 1 1̄ 1 1 1̄

6 1 1 1̄ 1̄ 1̄ 1̄ 1 1

Table 9. Non-zero coefficients Č(Rγ , µγ , ν; ld) for the first vectors (ν = 1) of all the relevant
irreps (Rγ ) of the quotient group, G, for all the iron–oxygen clusters (ld) of the orbit �d, where
µγ labels subspaces of �d, belonging to the same irrep Rγ .

ld ∈ �d

Rγ µγ
1d

13d

2d

14d

3d

15d

4d

16d

5d

17d

6d

18d

7d

19d

8d

20d

9d

21d

10d

22d

11d

23d

12d

24d

R2 1 1 1 1 1 1 1 1 1 1 1 1

R7 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1

R11 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1

R14 1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1 1

tetrahedral cluster 9d which is the nearest neighbour of the cluster 1a. These selected clusters
share one oxygen site (1).

Since it has become apparent that only five aS6
u (see table 2), three bS4 (see table 4) and

four eS4 (see table 5) states allow p–d hybridization, from now on we are going to discuss only
these irreps of the quotient group,G, which, after the restriction ofG to S6, decouple from the
irrep aS6

u , and also, after the restriction of G to S4, decouple from bS4 and eS4 (see equations
(12)–(17) and equations (26)–(31)).



The p–d hybridization and direct p–p hopping in yttrium–iron garnets 3617

Table 8 displays coefficients expressing the contributions of the a-sublattice clusters to all
the first vectors of the irreducible subspaces of the orbit�a, corresponding to the relevant irreps
of the transitive group. The remaining vectors of the subspaces can be easily obtained within
the framework of the same projection procedure. For the orbit �d, analogous information is
given in table 9.

The results for the irrep R13 are not given in tables 6–9 as they all turn out to be identical
with those for R11. For each irrep of the tables, the number of different linear combinations
of hybridizing clusters in the crystal unit cell is equal to the square of the irrep’s dimension.
However, as seen from tables 8 and 9, these combinations often do not run through all the
clusters of either �a or �d, but select certain subsets. Also, inside the clusters some oxygens
may not contribute to the hybridization (see tables 6 and 7). For each representation, finally, all
possible selections cover the whole of the pair space. For example, in the case of R2, only one
linear combination of all the hybridizing clusters is obtained in �a and �d, with five possible
aS6

u singlets (�a) or three possible bS4 singlets (�d) associated with every pair of the respective
clusters.

By considering crystal-field effects, we come to the conclusion that in the orbit �a the
favoured ones are the representations which contain the 3d states of the doublet eOh

g , whereas

in �d the cubic crystal field selects 3d singlets constructed from the states of tOh
2g .

Because of our interest in a possible mechanism of charge transport both in YIG and
its derivatives, we emphasize one conclusion again. With respect to the p–d hybridization,
each pair space separates into 16 (�a) or 24 (�d) single hybridizing clusters consisting of
the central iron ion surrounded by its six (sublattice a) or four (sublattice d) oxygen nearest
neighbours. In each pair space, no sites are shared by the clusters. Mutual oxygen sites occur
only for clusters belonging to different orbits: �a and�d. So, it seems that each pair space can
be considered as a set of well-separated hybridizing clusters [7], and there arises a question
of how the charge can move between them. It can be shown that compensating holes can
be transferred between clusters of the same type due to the direct p–p hopping (see the next
section), whereas the transport between neighbouring a-sublattice and d-sublattice clusters can
be mediated solely by the p–d hybridization. In order to make this happen, we must consider
what symmetry conditions have to be fulfilled. The formalism demands two matrix elements
of the Hamiltonian Ĥp−d to be non-zero: that between the tetrahedral 3d states and oxygen
2p states, and that between the octahedral 3d states and the appropriate oxygen 2p states. As
already stated before, this can be achieved when the respective irreps of both stabilizers, i.e. S4

and S6, induce the same irrep of the distributing group G.

3. The direct p–p hopping in YIG

In order to investigate the p–p hopping in YIG we start with identification of all oxygen
neighbours of each single oxygen site in the crystal unit cell, up to the fifth order of the
neighbourhood. As mentioned before, the oxygen sites are labelled by 96 successive elements
of the transitive group G. The oxygen site labelled as 1 has the coordinates of its positional
vector equal to (x, y, z)with respect to the centre of the Cartesian coordinate system located at
the iron site 1a. After some simple geometrical estimation, the actual values of the coordinates
can be easily found.

The oxygen neighbours of the site 1 (labelled by the first element of the transitive group
G) are identified up to the fifth zone of neighbourhood [8, 12]. This information is gathered
in table 10.

Positions of the oxygen sites are given in parentheses with respect to the iron site 1a.
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Table 10. Successive neighbours of the first oxygen site (1) of the crystal unit cell up to the fifth
zone of neighbourhood.

Neighbourhood zones

Zone I 5 = (z, x, y)

9 = (y, z, x)

Zone II 68 = (ȳ + 1
4 , x̄ + 1

4 , z̄ + 1
4 )

Zone III 3 = (x̄ + 1
2 , y, z)

Zone IV 70 = (x̄ + 1
4 , z− 1

4 , y + 1
4 )

Zone V 29 = (z̄, x̄, ȳ)

33 = (ȳ, z̄, x̄)

On the basis of the information gathered in table 10 and by using all of the elements of
G, we obtain the neighbours of all of the oxygens in the crystal unit cell. The result of this
procedure turns out to be quite interesting, especially with respect to the problem of the p–p
hopping. Thirty six three-site closed-up clusters of common nearest neighbours are found.
The second neighbours form forty eight two-site clusters and so forth. This conclusion is
partly illustrated in table 11 where the first and second zones of neighbourhood are specified
for several selected oxygen sites.

Table 11. The first and second zones of neighbourhood for several selected oxygen sites.

The neighbours

Oxygen sites I II

1 5, 9 68
5 1, 9 71
9 1, 5 72

68 71, 72 1
71 68, 72 5
72 68, 71 9

The result suggests that no continuous charge motion in the crystal can be expected to be
mediated solely by the p–p hopping even if more distant hops are considered.

Let us consider now the p–p hopping by taking into account both the octahedral (S6) and
tetrahedral (S4) point symmetries.

In the first case, the irreducible representation tOh
1u associated with each oxygen site, after

the restriction of Oh to its subgroup S6, becomes reducible and as such it decomposes as
indicated in equation (10).

Thus in the fibre space of each oxygen pair, we have to consider square Cartesian products
of each ungerade irrep of S6. The useful results take the following form:

aS6
u ⊗ aS6

u = eS6
u ⊗ (eS6

u )
∗ = aS6

g (39)

and

aS6
u ⊗ eS6

u = eS6
u ⊗ eS6

u = (eS6
g )

∗. (40)

Again within the framework of the projection procedure, all possible states corresponding
to the three gerade irreps of S6 can be found. The question of their occurrence in the space of
all possible oxygen–oxygen pairs is analysed for successive neighbours of the oxygen 1. The
detailed results are given below, in table 12.
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Table 12. Bases of the irreps aS6
g and eS6

g for the fibre space for selected oxygen pairs with fixed
f = 1.

Oxygen pair Matrix element
(f, f ′) of Hp−p

aS6
g

1
3 (x(f ) + y(f ) + z(f ))(x(f ′) + y(f ′) + z(f ′)) f ′ = 5 t1

f ′ = 9 t1

f ′ = 68 −t2

eS6
g

1
3 (z(f ) + ω∗x(f ) + ωy(f ))(z(f ′) + ω∗x(f ′) + ωy(f ′)) f ′ = 68 −t2

In the first and second columns, two successive bonding bases are explicitly shown,
according to the formulae (38) and (39). In the third column, the specific oxygen pairs are
given, with the appropriate matrix elements of Ĥp−p in the fourth column. Finally, t1 and t2
denote the hopping parameters for the first and second neighbours, respectively.

It seems that, from the physical point of view, the second-neighbour hopping is more
important than hopping to the nearest neighbours. Let us consider possible charge motion
between clusters of the type a.

The three oxygen mutually nearest neighbours belong to the same hybridizing cluster.
But, if the next-nearest neighbours are involved, then the p–p hopping joins the nearest a-
sublattice clusters. And, what is even more interesting, from six nearest clusters, the p–p
next-nearest-neighbour hopping selects only two. For example, in the case of the 1a cluster,
the motion is possible only to either 5a or 13a clusters. From the cluster 5a the charge can
only get to either 1a or 9a. Positions of the central irons of these clusters single out the axis
〈111〉 [8, 12]. Consequently, the whole set of all 16 clusters of the type a splits into four
quasi-one-dimensional subsets along the threefold crystal axes.

Actually, there is some experimental evidence for anisotropy of the charge transportation
in the doped garnets [19].

The charge motion in the tetrahedral superlattice of iron–oxygen clusters may also be
mediated by the p–p hopping between the second oxygen neighbours. In the case of the
tetrahedral orbit�d, the cubic irrep tOh

1u decomposes into a sum of the irreps of the point group
S4 as shown before. Therefore for each pair of oxygen neighbours, we have to consider square
Cartesian products of bS4 , eS4 and (eS4)∗. In our further consideration, equations (32)–(36) turn
out to be extremely useful. As can be easily concluded, all possible bases are already known.
Below, in table 13, all information is gathered on the second-neighbour p–p hopping. Again,
like in the case of the octahedral sublattice, the second-neighbour hopping is more important
than that between first oxygen neighbours. Again like in the former case, the p–p hopping
between the second neighbours connects the nearest tetrahedral hybridizing clusters with one
another. In contrast, however, to the situation supposed to occur in the space of the octahedral
clusters, no crystal axis seems to be favoured so far.

4. The final conclusions

Let us draw some final conclusions from the above results. The symmetry analysis of the two
important processes which probably occur in both pure and doped yttrium–iron garnets clearly
suggests possible microscopic mechanisms for the charge transportation. It seems that the
complex specific geometry of garnets is responsible for the fact that both p–d hybridization
and direct p–p hopping are limited in their influence to small-sized clusters of neighbours [5–7].
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Table 13. Bases of the irreps aS4 , bS4 and eS4 for the fibre space the second-neighbour oxygen
pair: f = 1, f ′ = 68.

The basis Matrix elements of Ĥp−p

aS4 y(f )y(f ′) 0
1√
2
(x(f ) + iz(f )) 1√

2
(x(f ′)− iz(f ′)) −t2//2

bS4 1√
2
(x(f ) + iz(f )) 1√

2
(x(f ′) + iz(f ′)) t2/2

1√
2
(x(f )− iz(f )) 1√

2
(x(f ′)− iz(f ′)) t2/2

eS4 y(f ) 1√
2
(x(f ′)− iz(f ′)) −t2/

√
2

1√
2
(x(f )− iz(f ))y(f ′) −t2/

√
2

In order to explain any continuous charge motion in the crystal, three possible mechanisms
must be considered:

(i) Intra-sublattice motion in the octahedral sublattice (a). Its occurrence requires a com-
bination of the p–d hybridization with the p–p hopping between the second oxygen
neighbours. As seen from our discussion so far, the three oxygen nearest neighbours
belong to the same hybridizing cluster. The next-nearest-neighbour p–p hopping brings
the charge to the nearest hybridizing cluster. And, what is even more interesting, the
symmetry limits possible motion to two of the six nearest octahedral hybridizing clusters.
The p–p hopping to the second neighbour gives rise to motion between the p–d hybridizing
clusters which are nearest neighbours to one another. The threefold crystal axes are
singled out and actually a possible conduction anisotropy is backed by some experimental
evidence [19]. The whole superlattice of 16 octahedral clusters spontaneously splits into
four subsets along the four threefold crystal axes.

(ii) Intra-sublattice motion in the tetrahedral sublattice (d). Like the motion among the a-
sublattice hybridizing clusters, it is mediated both by the p–d hybridization and the p–p
hopping between the next-nearest neighbours. However, unlike in the former case, the
motion among the tetrahedral hybridizing clusters is isotropic.

(iii) Inter-sublattice motion between the a- and d-sublattice hybridizing clusters can be attained
solely by p–d hybridization since each two nearest a- and d-sublattice clusters share one
common oxygen site. The necessary condition for this to occur is that the irreps of the
respective point groups S6 and S4, which determine the hybridization channels in the
crystal, induce the same irrep of the distributing group G. The most probable choice
seems to be the one-dimensional irrep R2 of the distributing group which is reduced to the
irrep aS6

u in the octahedral orbit �a, and to the irrep bS4 in the tetrahedral orbit �d.
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[17] Donnerberg H, Többen S and Birkholz A 1997 J. Phys.: Condens. Matter 9 6359
[18] Klein L and Aharony A 1992 Phys. Rev. B 45 9915
[19] Turbin G S 1996 Dissertation The Ohio State University, Columbus, OH


